Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- x e. _V |
2 |
1
|
elfix |
|- ( x e. Fix A <-> x A x ) |
3 |
1
|
elrn |
|- ( x e. ran ( A i^i _I ) <-> E. y y ( A i^i _I ) x ) |
4 |
|
brin |
|- ( y ( A i^i _I ) x <-> ( y A x /\ y _I x ) ) |
5 |
|
ancom |
|- ( ( y A x /\ y _I x ) <-> ( y _I x /\ y A x ) ) |
6 |
1
|
ideq |
|- ( y _I x <-> y = x ) |
7 |
6
|
anbi1i |
|- ( ( y _I x /\ y A x ) <-> ( y = x /\ y A x ) ) |
8 |
4 5 7
|
3bitri |
|- ( y ( A i^i _I ) x <-> ( y = x /\ y A x ) ) |
9 |
8
|
exbii |
|- ( E. y y ( A i^i _I ) x <-> E. y ( y = x /\ y A x ) ) |
10 |
|
breq1 |
|- ( y = x -> ( y A x <-> x A x ) ) |
11 |
10
|
equsexvw |
|- ( E. y ( y = x /\ y A x ) <-> x A x ) |
12 |
3 9 11
|
3bitri |
|- ( x e. ran ( A i^i _I ) <-> x A x ) |
13 |
2 12
|
bitr4i |
|- ( x e. Fix A <-> x e. ran ( A i^i _I ) ) |
14 |
13
|
eqriv |
|- Fix A = ran ( A i^i _I ) |