Step |
Hyp |
Ref |
Expression |
1 |
|
elfix.1 |
|- A e. _V |
2 |
|
df-fix |
|- Fix R = dom ( R i^i _I ) |
3 |
2
|
eleq2i |
|- ( A e. Fix R <-> A e. dom ( R i^i _I ) ) |
4 |
1
|
eldm |
|- ( A e. dom ( R i^i _I ) <-> E. x A ( R i^i _I ) x ) |
5 |
|
brin |
|- ( A ( R i^i _I ) x <-> ( A R x /\ A _I x ) ) |
6 |
|
ancom |
|- ( ( A R x /\ A _I x ) <-> ( A _I x /\ A R x ) ) |
7 |
|
vex |
|- x e. _V |
8 |
7
|
ideq |
|- ( A _I x <-> A = x ) |
9 |
|
eqcom |
|- ( A = x <-> x = A ) |
10 |
8 9
|
bitri |
|- ( A _I x <-> x = A ) |
11 |
10
|
anbi1i |
|- ( ( A _I x /\ A R x ) <-> ( x = A /\ A R x ) ) |
12 |
5 6 11
|
3bitri |
|- ( A ( R i^i _I ) x <-> ( x = A /\ A R x ) ) |
13 |
12
|
exbii |
|- ( E. x A ( R i^i _I ) x <-> E. x ( x = A /\ A R x ) ) |
14 |
4 13
|
bitri |
|- ( A e. dom ( R i^i _I ) <-> E. x ( x = A /\ A R x ) ) |
15 |
|
breq2 |
|- ( x = A -> ( A R x <-> A R A ) ) |
16 |
1 15
|
ceqsexv |
|- ( E. x ( x = A /\ A R x ) <-> A R A ) |
17 |
3 14 16
|
3bitri |
|- ( A e. Fix R <-> A R A ) |