Metamath Proof Explorer


Theorem elfix2

Description: Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Hypothesis elfix2.1
|- Rel R
Assertion elfix2
|- ( A e. Fix R <-> A R A )

Proof

Step Hyp Ref Expression
1 elfix2.1
 |-  Rel R
2 elex
 |-  ( A e. Fix R -> A e. _V )
3 1 brrelex1i
 |-  ( A R A -> A e. _V )
4 eleq1
 |-  ( x = A -> ( x e. Fix R <-> A e. Fix R ) )
5 breq12
 |-  ( ( x = A /\ x = A ) -> ( x R x <-> A R A ) )
6 5 anidms
 |-  ( x = A -> ( x R x <-> A R A ) )
7 vex
 |-  x e. _V
8 7 elfix
 |-  ( x e. Fix R <-> x R x )
9 4 6 8 vtoclbg
 |-  ( A e. _V -> ( A e. Fix R <-> A R A ) )
10 2 3 9 pm5.21nii
 |-  ( A e. Fix R <-> A R A )