Description: Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elfix2.1 | |- Rel R |
|
Assertion | elfix2 | |- ( A e. Fix R <-> A R A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfix2.1 | |- Rel R |
|
2 | elex | |- ( A e. Fix R -> A e. _V ) |
|
3 | 1 | brrelex1i | |- ( A R A -> A e. _V ) |
4 | eleq1 | |- ( x = A -> ( x e. Fix R <-> A e. Fix R ) ) |
|
5 | breq12 | |- ( ( x = A /\ x = A ) -> ( x R x <-> A R A ) ) |
|
6 | 5 | anidms | |- ( x = A -> ( x R x <-> A R A ) ) |
7 | vex | |- x e. _V |
|
8 | 7 | elfix | |- ( x e. Fix R <-> x R x ) |
9 | 4 6 8 | vtoclbg | |- ( A e. _V -> ( A e. Fix R <-> A R A ) ) |
10 | 2 3 9 | pm5.21nii | |- ( A e. Fix R <-> A R A ) |