Metamath Proof Explorer


Theorem fixssdm

Description: The fixpoints of a class are a subset of its domain. (Contributed by Scott Fenton, 16-Apr-2012)

Ref Expression
Assertion fixssdm Fix 𝐴 ⊆ dom 𝐴

Proof

Step Hyp Ref Expression
1 df-fix Fix 𝐴 = dom ( 𝐴 ∩ I )
2 inss1 ( 𝐴 ∩ I ) ⊆ 𝐴
3 dmss ( ( 𝐴 ∩ I ) ⊆ 𝐴 → dom ( 𝐴 ∩ I ) ⊆ dom 𝐴 )
4 2 3 ax-mp dom ( 𝐴 ∩ I ) ⊆ dom 𝐴
5 1 4 eqsstri Fix 𝐴 ⊆ dom 𝐴