Step |
Hyp |
Ref |
Expression |
1 |
|
indir |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ I ) = ( ( 𝐴 ∩ I ) ∪ ( 𝐵 ∩ I ) ) |
2 |
1
|
dmeqi |
⊢ dom ( ( 𝐴 ∪ 𝐵 ) ∩ I ) = dom ( ( 𝐴 ∩ I ) ∪ ( 𝐵 ∩ I ) ) |
3 |
|
dmun |
⊢ dom ( ( 𝐴 ∩ I ) ∪ ( 𝐵 ∩ I ) ) = ( dom ( 𝐴 ∩ I ) ∪ dom ( 𝐵 ∩ I ) ) |
4 |
2 3
|
eqtri |
⊢ dom ( ( 𝐴 ∪ 𝐵 ) ∩ I ) = ( dom ( 𝐴 ∩ I ) ∪ dom ( 𝐵 ∩ I ) ) |
5 |
|
df-fix |
⊢ Fix ( 𝐴 ∪ 𝐵 ) = dom ( ( 𝐴 ∪ 𝐵 ) ∩ I ) |
6 |
|
df-fix |
⊢ Fix 𝐴 = dom ( 𝐴 ∩ I ) |
7 |
|
df-fix |
⊢ Fix 𝐵 = dom ( 𝐵 ∩ I ) |
8 |
6 7
|
uneq12i |
⊢ ( Fix 𝐴 ∪ Fix 𝐵 ) = ( dom ( 𝐴 ∩ I ) ∪ dom ( 𝐵 ∩ I ) ) |
9 |
4 5 8
|
3eqtr4i |
⊢ Fix ( 𝐴 ∪ 𝐵 ) = ( Fix 𝐴 ∪ Fix 𝐵 ) |