Metamath Proof Explorer


Theorem fixun

Description: The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012)

Ref Expression
Assertion fixun Fix ( 𝐴𝐵 ) = ( Fix 𝐴 Fix 𝐵 )

Proof

Step Hyp Ref Expression
1 indir ( ( 𝐴𝐵 ) ∩ I ) = ( ( 𝐴 ∩ I ) ∪ ( 𝐵 ∩ I ) )
2 1 dmeqi dom ( ( 𝐴𝐵 ) ∩ I ) = dom ( ( 𝐴 ∩ I ) ∪ ( 𝐵 ∩ I ) )
3 dmun dom ( ( 𝐴 ∩ I ) ∪ ( 𝐵 ∩ I ) ) = ( dom ( 𝐴 ∩ I ) ∪ dom ( 𝐵 ∩ I ) )
4 2 3 eqtri dom ( ( 𝐴𝐵 ) ∩ I ) = ( dom ( 𝐴 ∩ I ) ∪ dom ( 𝐵 ∩ I ) )
5 df-fix Fix ( 𝐴𝐵 ) = dom ( ( 𝐴𝐵 ) ∩ I )
6 df-fix Fix 𝐴 = dom ( 𝐴 ∩ I )
7 df-fix Fix 𝐵 = dom ( 𝐵 ∩ I )
8 6 7 uneq12i ( Fix 𝐴 Fix 𝐵 ) = ( dom ( 𝐴 ∩ I ) ∪ dom ( 𝐵 ∩ I ) )
9 4 5 8 3eqtr4i Fix ( 𝐴𝐵 ) = ( Fix 𝐴 Fix 𝐵 )