| Step | Hyp | Ref | Expression | 
						
							| 1 |  | indir | ⊢ ( ( 𝐴  ∪  𝐵 )  ∩   I  )  =  ( ( 𝐴  ∩   I  )  ∪  ( 𝐵  ∩   I  ) ) | 
						
							| 2 | 1 | dmeqi | ⊢ dom  ( ( 𝐴  ∪  𝐵 )  ∩   I  )  =  dom  ( ( 𝐴  ∩   I  )  ∪  ( 𝐵  ∩   I  ) ) | 
						
							| 3 |  | dmun | ⊢ dom  ( ( 𝐴  ∩   I  )  ∪  ( 𝐵  ∩   I  ) )  =  ( dom  ( 𝐴  ∩   I  )  ∪  dom  ( 𝐵  ∩   I  ) ) | 
						
							| 4 | 2 3 | eqtri | ⊢ dom  ( ( 𝐴  ∪  𝐵 )  ∩   I  )  =  ( dom  ( 𝐴  ∩   I  )  ∪  dom  ( 𝐵  ∩   I  ) ) | 
						
							| 5 |  | df-fix | ⊢  Fix  ( 𝐴  ∪  𝐵 )  =  dom  ( ( 𝐴  ∪  𝐵 )  ∩   I  ) | 
						
							| 6 |  | df-fix | ⊢  Fix  𝐴  =  dom  ( 𝐴  ∩   I  ) | 
						
							| 7 |  | df-fix | ⊢  Fix  𝐵  =  dom  ( 𝐵  ∩   I  ) | 
						
							| 8 | 6 7 | uneq12i | ⊢ (  Fix  𝐴  ∪   Fix  𝐵 )  =  ( dom  ( 𝐴  ∩   I  )  ∪  dom  ( 𝐵  ∩   I  ) ) | 
						
							| 9 | 4 5 8 | 3eqtr4i | ⊢  Fix  ( 𝐴  ∪  𝐵 )  =  (  Fix  𝐴  ∪   Fix  𝐵 ) |