| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ellimits.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | df-limits | ⊢  Limits   =  ( ( On  ∩   Fix   Bigcup  )  ∖  { ∅ } ) | 
						
							| 3 | 2 | eleq2i | ⊢ ( 𝐴  ∈   Limits   ↔  𝐴  ∈  ( ( On  ∩   Fix   Bigcup  )  ∖  { ∅ } ) ) | 
						
							| 4 |  | eldif | ⊢ ( 𝐴  ∈  ( ( On  ∩   Fix   Bigcup  )  ∖  { ∅ } )  ↔  ( 𝐴  ∈  ( On  ∩   Fix   Bigcup  )  ∧  ¬  𝐴  ∈  { ∅ } ) ) | 
						
							| 5 |  | 3anan32 | ⊢ ( ( Ord  𝐴  ∧  𝐴  ≠  ∅  ∧  𝐴  =  ∪  𝐴 )  ↔  ( ( Ord  𝐴  ∧  𝐴  =  ∪  𝐴 )  ∧  𝐴  ≠  ∅ ) ) | 
						
							| 6 |  | df-lim | ⊢ ( Lim  𝐴  ↔  ( Ord  𝐴  ∧  𝐴  ≠  ∅  ∧  𝐴  =  ∪  𝐴 ) ) | 
						
							| 7 |  | elin | ⊢ ( 𝐴  ∈  ( On  ∩   Fix   Bigcup  )  ↔  ( 𝐴  ∈  On  ∧  𝐴  ∈   Fix   Bigcup  ) ) | 
						
							| 8 | 1 | elon | ⊢ ( 𝐴  ∈  On  ↔  Ord  𝐴 ) | 
						
							| 9 | 1 | elfix | ⊢ ( 𝐴  ∈   Fix   Bigcup   ↔  𝐴  Bigcup  𝐴 ) | 
						
							| 10 | 1 | brbigcup | ⊢ ( 𝐴  Bigcup  𝐴  ↔  ∪  𝐴  =  𝐴 ) | 
						
							| 11 |  | eqcom | ⊢ ( ∪  𝐴  =  𝐴  ↔  𝐴  =  ∪  𝐴 ) | 
						
							| 12 | 9 10 11 | 3bitri | ⊢ ( 𝐴  ∈   Fix   Bigcup   ↔  𝐴  =  ∪  𝐴 ) | 
						
							| 13 | 8 12 | anbi12i | ⊢ ( ( 𝐴  ∈  On  ∧  𝐴  ∈   Fix   Bigcup  )  ↔  ( Ord  𝐴  ∧  𝐴  =  ∪  𝐴 ) ) | 
						
							| 14 | 7 13 | bitri | ⊢ ( 𝐴  ∈  ( On  ∩   Fix   Bigcup  )  ↔  ( Ord  𝐴  ∧  𝐴  =  ∪  𝐴 ) ) | 
						
							| 15 | 1 | elsn | ⊢ ( 𝐴  ∈  { ∅ }  ↔  𝐴  =  ∅ ) | 
						
							| 16 | 15 | necon3bbii | ⊢ ( ¬  𝐴  ∈  { ∅ }  ↔  𝐴  ≠  ∅ ) | 
						
							| 17 | 14 16 | anbi12i | ⊢ ( ( 𝐴  ∈  ( On  ∩   Fix   Bigcup  )  ∧  ¬  𝐴  ∈  { ∅ } )  ↔  ( ( Ord  𝐴  ∧  𝐴  =  ∪  𝐴 )  ∧  𝐴  ≠  ∅ ) ) | 
						
							| 18 | 5 6 17 | 3bitr4ri | ⊢ ( ( 𝐴  ∈  ( On  ∩   Fix   Bigcup  )  ∧  ¬  𝐴  ∈  { ∅ } )  ↔  Lim  𝐴 ) | 
						
							| 19 | 3 4 18 | 3bitri | ⊢ ( 𝐴  ∈   Limits   ↔  Lim  𝐴 ) |