Step |
Hyp |
Ref |
Expression |
1 |
|
ellimits.1 |
⊢ 𝐴 ∈ V |
2 |
|
df-limits |
⊢ Limits = ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) |
3 |
2
|
eleq2i |
⊢ ( 𝐴 ∈ Limits ↔ 𝐴 ∈ ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) ) |
4 |
|
eldif |
⊢ ( 𝐴 ∈ ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) ↔ ( 𝐴 ∈ ( On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ { ∅ } ) ) |
5 |
|
3anan32 |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ↔ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ∧ 𝐴 ≠ ∅ ) ) |
6 |
|
df-lim |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) |
7 |
|
elin |
⊢ ( 𝐴 ∈ ( On ∩ Fix Bigcup ) ↔ ( 𝐴 ∈ On ∧ 𝐴 ∈ Fix Bigcup ) ) |
8 |
1
|
elon |
⊢ ( 𝐴 ∈ On ↔ Ord 𝐴 ) |
9 |
1
|
elfix |
⊢ ( 𝐴 ∈ Fix Bigcup ↔ 𝐴 Bigcup 𝐴 ) |
10 |
1
|
brbigcup |
⊢ ( 𝐴 Bigcup 𝐴 ↔ ∪ 𝐴 = 𝐴 ) |
11 |
|
eqcom |
⊢ ( ∪ 𝐴 = 𝐴 ↔ 𝐴 = ∪ 𝐴 ) |
12 |
9 10 11
|
3bitri |
⊢ ( 𝐴 ∈ Fix Bigcup ↔ 𝐴 = ∪ 𝐴 ) |
13 |
8 12
|
anbi12i |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ∈ Fix Bigcup ) ↔ ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ) |
14 |
7 13
|
bitri |
⊢ ( 𝐴 ∈ ( On ∩ Fix Bigcup ) ↔ ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ) |
15 |
1
|
elsn |
⊢ ( 𝐴 ∈ { ∅ } ↔ 𝐴 = ∅ ) |
16 |
15
|
necon3bbii |
⊢ ( ¬ 𝐴 ∈ { ∅ } ↔ 𝐴 ≠ ∅ ) |
17 |
14 16
|
anbi12i |
⊢ ( ( 𝐴 ∈ ( On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ { ∅ } ) ↔ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ∧ 𝐴 ≠ ∅ ) ) |
18 |
5 6 17
|
3bitr4ri |
⊢ ( ( 𝐴 ∈ ( On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ { ∅ } ) ↔ Lim 𝐴 ) |
19 |
3 4 18
|
3bitri |
⊢ ( 𝐴 ∈ Limits ↔ Lim 𝐴 ) |