Step |
Hyp |
Ref |
Expression |
1 |
|
ellimits.1 |
|- A e. _V |
2 |
|
df-limits |
|- Limits = ( ( On i^i Fix Bigcup ) \ { (/) } ) |
3 |
2
|
eleq2i |
|- ( A e. Limits <-> A e. ( ( On i^i Fix Bigcup ) \ { (/) } ) ) |
4 |
|
eldif |
|- ( A e. ( ( On i^i Fix Bigcup ) \ { (/) } ) <-> ( A e. ( On i^i Fix Bigcup ) /\ -. A e. { (/) } ) ) |
5 |
|
3anan32 |
|- ( ( Ord A /\ A =/= (/) /\ A = U. A ) <-> ( ( Ord A /\ A = U. A ) /\ A =/= (/) ) ) |
6 |
|
df-lim |
|- ( Lim A <-> ( Ord A /\ A =/= (/) /\ A = U. A ) ) |
7 |
|
elin |
|- ( A e. ( On i^i Fix Bigcup ) <-> ( A e. On /\ A e. Fix Bigcup ) ) |
8 |
1
|
elon |
|- ( A e. On <-> Ord A ) |
9 |
1
|
elfix |
|- ( A e. Fix Bigcup <-> A Bigcup A ) |
10 |
1
|
brbigcup |
|- ( A Bigcup A <-> U. A = A ) |
11 |
|
eqcom |
|- ( U. A = A <-> A = U. A ) |
12 |
9 10 11
|
3bitri |
|- ( A e. Fix Bigcup <-> A = U. A ) |
13 |
8 12
|
anbi12i |
|- ( ( A e. On /\ A e. Fix Bigcup ) <-> ( Ord A /\ A = U. A ) ) |
14 |
7 13
|
bitri |
|- ( A e. ( On i^i Fix Bigcup ) <-> ( Ord A /\ A = U. A ) ) |
15 |
1
|
elsn |
|- ( A e. { (/) } <-> A = (/) ) |
16 |
15
|
necon3bbii |
|- ( -. A e. { (/) } <-> A =/= (/) ) |
17 |
14 16
|
anbi12i |
|- ( ( A e. ( On i^i Fix Bigcup ) /\ -. A e. { (/) } ) <-> ( ( Ord A /\ A = U. A ) /\ A =/= (/) ) ) |
18 |
5 6 17
|
3bitr4ri |
|- ( ( A e. ( On i^i Fix Bigcup ) /\ -. A e. { (/) } ) <-> Lim A ) |
19 |
3 4 18
|
3bitri |
|- ( A e. Limits <-> Lim A ) |