Metamath Proof Explorer


Theorem ellimits

Description: Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Hypothesis ellimits.1
|- A e. _V
Assertion ellimits
|- ( A e. Limits <-> Lim A )

Proof

Step Hyp Ref Expression
1 ellimits.1
 |-  A e. _V
2 df-limits
 |-  Limits = ( ( On i^i Fix Bigcup ) \ { (/) } )
3 2 eleq2i
 |-  ( A e. Limits <-> A e. ( ( On i^i Fix Bigcup ) \ { (/) } ) )
4 eldif
 |-  ( A e. ( ( On i^i Fix Bigcup ) \ { (/) } ) <-> ( A e. ( On i^i Fix Bigcup ) /\ -. A e. { (/) } ) )
5 3anan32
 |-  ( ( Ord A /\ A =/= (/) /\ A = U. A ) <-> ( ( Ord A /\ A = U. A ) /\ A =/= (/) ) )
6 df-lim
 |-  ( Lim A <-> ( Ord A /\ A =/= (/) /\ A = U. A ) )
7 elin
 |-  ( A e. ( On i^i Fix Bigcup ) <-> ( A e. On /\ A e. Fix Bigcup ) )
8 1 elon
 |-  ( A e. On <-> Ord A )
9 1 elfix
 |-  ( A e. Fix Bigcup <-> A Bigcup A )
10 1 brbigcup
 |-  ( A Bigcup A <-> U. A = A )
11 eqcom
 |-  ( U. A = A <-> A = U. A )
12 9 10 11 3bitri
 |-  ( A e. Fix Bigcup <-> A = U. A )
13 8 12 anbi12i
 |-  ( ( A e. On /\ A e. Fix Bigcup ) <-> ( Ord A /\ A = U. A ) )
14 7 13 bitri
 |-  ( A e. ( On i^i Fix Bigcup ) <-> ( Ord A /\ A = U. A ) )
15 1 elsn
 |-  ( A e. { (/) } <-> A = (/) )
16 15 necon3bbii
 |-  ( -. A e. { (/) } <-> A =/= (/) )
17 14 16 anbi12i
 |-  ( ( A e. ( On i^i Fix Bigcup ) /\ -. A e. { (/) } ) <-> ( ( Ord A /\ A = U. A ) /\ A =/= (/) ) )
18 5 6 17 3bitr4ri
 |-  ( ( A e. ( On i^i Fix Bigcup ) /\ -. A e. { (/) } ) <-> Lim A )
19 3 4 18 3bitri
 |-  ( A e. Limits <-> Lim A )