| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ellimits.1 |  |-  A e. _V | 
						
							| 2 |  | df-limits |  |-  Limits = ( ( On i^i Fix Bigcup ) \ { (/) } ) | 
						
							| 3 | 2 | eleq2i |  |-  ( A e. Limits <-> A e. ( ( On i^i Fix Bigcup ) \ { (/) } ) ) | 
						
							| 4 |  | eldif |  |-  ( A e. ( ( On i^i Fix Bigcup ) \ { (/) } ) <-> ( A e. ( On i^i Fix Bigcup ) /\ -. A e. { (/) } ) ) | 
						
							| 5 |  | 3anan32 |  |-  ( ( Ord A /\ A =/= (/) /\ A = U. A ) <-> ( ( Ord A /\ A = U. A ) /\ A =/= (/) ) ) | 
						
							| 6 |  | df-lim |  |-  ( Lim A <-> ( Ord A /\ A =/= (/) /\ A = U. A ) ) | 
						
							| 7 |  | elin |  |-  ( A e. ( On i^i Fix Bigcup ) <-> ( A e. On /\ A e. Fix Bigcup ) ) | 
						
							| 8 | 1 | elon |  |-  ( A e. On <-> Ord A ) | 
						
							| 9 | 1 | elfix |  |-  ( A e. Fix Bigcup <-> A Bigcup A ) | 
						
							| 10 | 1 | brbigcup |  |-  ( A Bigcup A <-> U. A = A ) | 
						
							| 11 |  | eqcom |  |-  ( U. A = A <-> A = U. A ) | 
						
							| 12 | 9 10 11 | 3bitri |  |-  ( A e. Fix Bigcup <-> A = U. A ) | 
						
							| 13 | 8 12 | anbi12i |  |-  ( ( A e. On /\ A e. Fix Bigcup ) <-> ( Ord A /\ A = U. A ) ) | 
						
							| 14 | 7 13 | bitri |  |-  ( A e. ( On i^i Fix Bigcup ) <-> ( Ord A /\ A = U. A ) ) | 
						
							| 15 | 1 | elsn |  |-  ( A e. { (/) } <-> A = (/) ) | 
						
							| 16 | 15 | necon3bbii |  |-  ( -. A e. { (/) } <-> A =/= (/) ) | 
						
							| 17 | 14 16 | anbi12i |  |-  ( ( A e. ( On i^i Fix Bigcup ) /\ -. A e. { (/) } ) <-> ( ( Ord A /\ A = U. A ) /\ A =/= (/) ) ) | 
						
							| 18 | 5 6 17 | 3bitr4ri |  |-  ( ( A e. ( On i^i Fix Bigcup ) /\ -. A e. { (/) } ) <-> Lim A ) | 
						
							| 19 | 3 4 18 | 3bitri |  |-  ( A e. Limits <-> Lim A ) |