Metamath Proof Explorer


Theorem limitssson

Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Assertion limitssson
|- Limits C_ On

Proof

Step Hyp Ref Expression
1 df-limits
 |-  Limits = ( ( On i^i Fix Bigcup ) \ { (/) } )
2 difss
 |-  ( ( On i^i Fix Bigcup ) \ { (/) } ) C_ ( On i^i Fix Bigcup )
3 inss1
 |-  ( On i^i Fix Bigcup ) C_ On
4 2 3 sstri
 |-  ( ( On i^i Fix Bigcup ) \ { (/) } ) C_ On
5 1 4 eqsstri
 |-  Limits C_ On