Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | limitssson | |- Limits C_ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-limits | |- Limits = ( ( On i^i Fix Bigcup ) \ { (/) } ) |
|
2 | difss | |- ( ( On i^i Fix Bigcup ) \ { (/) } ) C_ ( On i^i Fix Bigcup ) |
|
3 | inss1 | |- ( On i^i Fix Bigcup ) C_ On |
|
4 | 2 3 | sstri | |- ( ( On i^i Fix Bigcup ) \ { (/) } ) C_ On |
5 | 1 4 | eqsstri | |- Limits C_ On |