Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limitssson | |- Limits C_ On | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-limits |  |-  Limits = ( ( On i^i Fix Bigcup ) \ { (/) } ) | |
| 2 | difss |  |-  ( ( On i^i Fix Bigcup ) \ { (/) } ) C_ ( On i^i Fix Bigcup ) | |
| 3 | inss1 | |- ( On i^i Fix Bigcup ) C_ On | |
| 4 | 2 3 | sstri |  |-  ( ( On i^i Fix Bigcup ) \ { (/) } ) C_ On | 
| 5 | 1 4 | eqsstri | |- Limits C_ On |