Metamath Proof Explorer


Theorem limitssson

Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Assertion limitssson Limits ⊆ On

Proof

Step Hyp Ref Expression
1 df-limits Limits = ( ( On ∩ Fix Bigcup ) ∖ { ∅ } )
2 difss ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) ⊆ ( On ∩ Fix Bigcup )
3 inss1 ( On ∩ Fix Bigcup ) ⊆ On
4 2 3 sstri ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) ⊆ On
5 1 4 eqsstri Limits ⊆ On