Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limitssson | ⊢ Limits ⊆ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-limits | ⊢ Limits = ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) | |
| 2 | difss | ⊢ ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) ⊆ ( On ∩ Fix Bigcup ) | |
| 3 | inss1 | ⊢ ( On ∩ Fix Bigcup ) ⊆ On | |
| 4 | 2 3 | sstri | ⊢ ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) ⊆ On |
| 5 | 1 4 | eqsstri | ⊢ Limits ⊆ On |