Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | limitssson | ⊢ Limits ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-limits | ⊢ Limits = ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) | |
2 | difss | ⊢ ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) ⊆ ( On ∩ Fix Bigcup ) | |
3 | inss1 | ⊢ ( On ∩ Fix Bigcup ) ⊆ On | |
4 | 2 3 | sstri | ⊢ ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) ⊆ On |
5 | 1 4 | eqsstri | ⊢ Limits ⊆ On |