Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
1
|
elint |
⊢ ( 𝑥 ∈ ∩ Limits ↔ ∀ 𝑦 ( 𝑦 ∈ Limits → 𝑥 ∈ 𝑦 ) ) |
3 |
|
vex |
⊢ 𝑦 ∈ V |
4 |
3
|
ellimits |
⊢ ( 𝑦 ∈ Limits ↔ Lim 𝑦 ) |
5 |
4
|
imbi1i |
⊢ ( ( 𝑦 ∈ Limits → 𝑥 ∈ 𝑦 ) ↔ ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ) |
6 |
5
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ Limits → 𝑥 ∈ 𝑦 ) ↔ ∀ 𝑦 ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ) |
7 |
2 6
|
bitr2i |
⊢ ( ∀ 𝑦 ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ↔ 𝑥 ∈ ∩ Limits ) |
8 |
7
|
anbi2i |
⊢ ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits ) ) |
9 |
|
elom |
⊢ ( 𝑥 ∈ ω ↔ ( 𝑥 ∈ On ∧ ∀ 𝑦 ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ) ) |
10 |
|
elin |
⊢ ( 𝑥 ∈ ( On ∩ ∩ Limits ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits ) ) |
11 |
8 9 10
|
3bitr4i |
⊢ ( 𝑥 ∈ ω ↔ 𝑥 ∈ ( On ∩ ∩ Limits ) ) |
12 |
11
|
eqriv |
⊢ ω = ( On ∩ ∩ Limits ) |