Metamath Proof Explorer


Theorem dfom5b

Description: A quantifier-free definition of _om that does not depend on ax-inf . (Note: label was changed from dfom5 to dfom5b to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Assertion dfom5b ω = ( On ∩ Limits )

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 1 elint ( 𝑥 Limits ↔ ∀ 𝑦 ( 𝑦 Limits 𝑥𝑦 ) )
3 vex 𝑦 ∈ V
4 3 ellimits ( 𝑦 Limits ↔ Lim 𝑦 )
5 4 imbi1i ( ( 𝑦 Limits 𝑥𝑦 ) ↔ ( Lim 𝑦𝑥𝑦 ) )
6 5 albii ( ∀ 𝑦 ( 𝑦 Limits 𝑥𝑦 ) ↔ ∀ 𝑦 ( Lim 𝑦𝑥𝑦 ) )
7 2 6 bitr2i ( ∀ 𝑦 ( Lim 𝑦𝑥𝑦 ) ↔ 𝑥 Limits )
8 7 anbi2i ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ( Lim 𝑦𝑥𝑦 ) ) ↔ ( 𝑥 ∈ On ∧ 𝑥 Limits ) )
9 elom ( 𝑥 ∈ ω ↔ ( 𝑥 ∈ On ∧ ∀ 𝑦 ( Lim 𝑦𝑥𝑦 ) ) )
10 elin ( 𝑥 ∈ ( On ∩ Limits ) ↔ ( 𝑥 ∈ On ∧ 𝑥 Limits ) )
11 8 9 10 3bitr4i ( 𝑥 ∈ ω ↔ 𝑥 ∈ ( On ∩ Limits ) )
12 11 eqriv ω = ( On ∩ Limits )