Metamath Proof Explorer


Theorem dfom5b

Description: A quantifier-free definition of _om that does not depend on ax-inf . (Note: label was changed from dfom5 to dfom5b to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Assertion dfom5b ω=On𝖫𝗂𝗆𝗂𝗍𝗌

Proof

Step Hyp Ref Expression
1 vex xV
2 1 elint x𝖫𝗂𝗆𝗂𝗍𝗌yy𝖫𝗂𝗆𝗂𝗍𝗌xy
3 vex yV
4 3 ellimits y𝖫𝗂𝗆𝗂𝗍𝗌Limy
5 4 imbi1i y𝖫𝗂𝗆𝗂𝗍𝗌xyLimyxy
6 5 albii yy𝖫𝗂𝗆𝗂𝗍𝗌xyyLimyxy
7 2 6 bitr2i yLimyxyx𝖫𝗂𝗆𝗂𝗍𝗌
8 7 anbi2i xOnyLimyxyxOnx𝖫𝗂𝗆𝗂𝗍𝗌
9 elom xωxOnyLimyxy
10 elin xOn𝖫𝗂𝗆𝗂𝗍𝗌xOnx𝖫𝗂𝗆𝗂𝗍𝗌
11 8 9 10 3bitr4i xωxOn𝖫𝗂𝗆𝗂𝗍𝗌
12 11 eqriv ω=On𝖫𝗂𝗆𝗂𝗍𝗌