Metamath Proof Explorer


Theorem ellimits

Description: Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Hypothesis ellimits.1 A V
Assertion ellimits A 𝖫𝗂𝗆𝗂𝗍𝗌 Lim A

Proof

Step Hyp Ref Expression
1 ellimits.1 A V
2 df-limits 𝖫𝗂𝗆𝗂𝗍𝗌 = On 𝖥𝗂𝗑 𝖡𝗂𝗀𝖼𝗎𝗉
3 2 eleq2i A 𝖫𝗂𝗆𝗂𝗍𝗌 A On 𝖥𝗂𝗑 𝖡𝗂𝗀𝖼𝗎𝗉
4 eldif A On 𝖥𝗂𝗑 𝖡𝗂𝗀𝖼𝗎𝗉 A On 𝖥𝗂𝗑 𝖡𝗂𝗀𝖼𝗎𝗉 ¬ A
5 3anan32 Ord A A A = A Ord A A = A A
6 df-lim Lim A Ord A A A = A
7 elin A On 𝖥𝗂𝗑 𝖡𝗂𝗀𝖼𝗎𝗉 A On A 𝖥𝗂𝗑 𝖡𝗂𝗀𝖼𝗎𝗉
8 1 elon A On Ord A
9 1 elfix A 𝖥𝗂𝗑 𝖡𝗂𝗀𝖼𝗎𝗉 A 𝖡𝗂𝗀𝖼𝗎𝗉 A
10 1 brbigcup A 𝖡𝗂𝗀𝖼𝗎𝗉 A A = A
11 eqcom A = A A = A
12 9 10 11 3bitri A 𝖥𝗂𝗑 𝖡𝗂𝗀𝖼𝗎𝗉 A = A
13 8 12 anbi12i A On A 𝖥𝗂𝗑 𝖡𝗂𝗀𝖼𝗎𝗉 Ord A A = A
14 7 13 bitri A On 𝖥𝗂𝗑 𝖡𝗂𝗀𝖼𝗎𝗉 Ord A A = A
15 1 elsn A A =
16 15 necon3bbii ¬ A A
17 14 16 anbi12i A On 𝖥𝗂𝗑 𝖡𝗂𝗀𝖼𝗎𝗉 ¬ A Ord A A = A A
18 5 6 17 3bitr4ri A On 𝖥𝗂𝗑 𝖡𝗂𝗀𝖼𝗎𝗉 ¬ A Lim A
19 3 4 18 3bitri A 𝖫𝗂𝗆𝗂𝗍𝗌 Lim A