Step |
Hyp |
Ref |
Expression |
1 |
|
relco |
⊢ Rel ( I ∘ 𝐵 ) |
2 |
|
relss |
⊢ ( 𝐴 ⊆ ( I ∘ 𝐵 ) → ( Rel ( I ∘ 𝐵 ) → Rel 𝐴 ) ) |
3 |
1 2
|
mpi |
⊢ ( 𝐴 ⊆ ( I ∘ 𝐵 ) → Rel 𝐴 ) |
4 |
|
elrel |
⊢ ( ( Rel 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∃ 𝑧 𝑥 = 〈 𝑦 , 𝑧 〉 ) |
5 |
|
vex |
⊢ 𝑦 ∈ V |
6 |
|
vex |
⊢ 𝑧 ∈ V |
7 |
5 6
|
brco |
⊢ ( 𝑦 ( I ∘ 𝐵 ) 𝑧 ↔ ∃ 𝑥 ( 𝑦 𝐵 𝑥 ∧ 𝑥 I 𝑧 ) ) |
8 |
6
|
ideq |
⊢ ( 𝑥 I 𝑧 ↔ 𝑥 = 𝑧 ) |
9 |
8
|
anbi1ci |
⊢ ( ( 𝑦 𝐵 𝑥 ∧ 𝑥 I 𝑧 ) ↔ ( 𝑥 = 𝑧 ∧ 𝑦 𝐵 𝑥 ) ) |
10 |
9
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑦 𝐵 𝑥 ∧ 𝑥 I 𝑧 ) ↔ ∃ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑦 𝐵 𝑥 ) ) |
11 |
|
breq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 𝐵 𝑥 ↔ 𝑦 𝐵 𝑧 ) ) |
12 |
11
|
equsexvw |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑦 𝐵 𝑥 ) ↔ 𝑦 𝐵 𝑧 ) |
13 |
7 10 12
|
3bitri |
⊢ ( 𝑦 ( I ∘ 𝐵 ) 𝑧 ↔ 𝑦 𝐵 𝑧 ) |
14 |
13
|
a1i |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑦 ( I ∘ 𝐵 ) 𝑧 ↔ 𝑦 𝐵 𝑧 ) ) |
15 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ ( I ∘ 𝐵 ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ( I ∘ 𝐵 ) ) ) |
16 |
|
df-br |
⊢ ( 𝑦 ( I ∘ 𝐵 ) 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ ( I ∘ 𝐵 ) ) |
17 |
15 16
|
bitr4di |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ ( I ∘ 𝐵 ) ↔ 𝑦 ( I ∘ 𝐵 ) 𝑧 ) ) |
18 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ 𝐵 ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ) ) |
19 |
|
df-br |
⊢ ( 𝑦 𝐵 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ) |
20 |
18 19
|
bitr4di |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 𝐵 𝑧 ) ) |
21 |
14 17 20
|
3bitr4d |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ ( I ∘ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
22 |
21
|
exlimivv |
⊢ ( ∃ 𝑦 ∃ 𝑧 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ ( I ∘ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
23 |
4 22
|
syl |
⊢ ( ( Rel 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( I ∘ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
24 |
23
|
pm5.74da |
⊢ ( Rel 𝐴 → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( I ∘ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ) |
25 |
24
|
albidv |
⊢ ( Rel 𝐴 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( I ∘ 𝐵 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ) |
26 |
|
dfss2 |
⊢ ( 𝐴 ⊆ ( I ∘ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( I ∘ 𝐵 ) ) ) |
27 |
|
dfss2 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
28 |
25 26 27
|
3bitr4g |
⊢ ( Rel 𝐴 → ( 𝐴 ⊆ ( I ∘ 𝐵 ) ↔ 𝐴 ⊆ 𝐵 ) ) |
29 |
3 28
|
biadanii |
⊢ ( 𝐴 ⊆ ( I ∘ 𝐵 ) ↔ ( Rel 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ) |