Metamath Proof Explorer


Theorem fixun

Description: The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012)

Ref Expression
Assertion fixun
|- Fix ( A u. B ) = ( Fix A u. Fix B )

Proof

Step Hyp Ref Expression
1 indir
 |-  ( ( A u. B ) i^i _I ) = ( ( A i^i _I ) u. ( B i^i _I ) )
2 1 dmeqi
 |-  dom ( ( A u. B ) i^i _I ) = dom ( ( A i^i _I ) u. ( B i^i _I ) )
3 dmun
 |-  dom ( ( A i^i _I ) u. ( B i^i _I ) ) = ( dom ( A i^i _I ) u. dom ( B i^i _I ) )
4 2 3 eqtri
 |-  dom ( ( A u. B ) i^i _I ) = ( dom ( A i^i _I ) u. dom ( B i^i _I ) )
5 df-fix
 |-  Fix ( A u. B ) = dom ( ( A u. B ) i^i _I )
6 df-fix
 |-  Fix A = dom ( A i^i _I )
7 df-fix
 |-  Fix B = dom ( B i^i _I )
8 6 7 uneq12i
 |-  ( Fix A u. Fix B ) = ( dom ( A i^i _I ) u. dom ( B i^i _I ) )
9 4 5 8 3eqtr4i
 |-  Fix ( A u. B ) = ( Fix A u. Fix B )