| Step | Hyp | Ref | Expression | 
						
							| 1 |  | indir |  |-  ( ( A u. B ) i^i _I ) = ( ( A i^i _I ) u. ( B i^i _I ) ) | 
						
							| 2 | 1 | dmeqi |  |-  dom ( ( A u. B ) i^i _I ) = dom ( ( A i^i _I ) u. ( B i^i _I ) ) | 
						
							| 3 |  | dmun |  |-  dom ( ( A i^i _I ) u. ( B i^i _I ) ) = ( dom ( A i^i _I ) u. dom ( B i^i _I ) ) | 
						
							| 4 | 2 3 | eqtri |  |-  dom ( ( A u. B ) i^i _I ) = ( dom ( A i^i _I ) u. dom ( B i^i _I ) ) | 
						
							| 5 |  | df-fix |  |-  Fix ( A u. B ) = dom ( ( A u. B ) i^i _I ) | 
						
							| 6 |  | df-fix |  |-  Fix A = dom ( A i^i _I ) | 
						
							| 7 |  | df-fix |  |-  Fix B = dom ( B i^i _I ) | 
						
							| 8 | 6 7 | uneq12i |  |-  ( Fix A u. Fix B ) = ( dom ( A i^i _I ) u. dom ( B i^i _I ) ) | 
						
							| 9 | 4 5 8 | 3eqtr4i |  |-  Fix ( A u. B ) = ( Fix A u. Fix B ) |