Metamath Proof Explorer


Theorem fldgenid

Description: The subfield of a field F generated by the whole base set of F is F itself. (Contributed by Thierry Arnoux, 11-Jan-2025)

Ref Expression
Hypotheses fldgenval.1 B = Base F
fldgenval.2 φ F DivRing
Assertion fldgenid φ F fldGen B = B

Proof

Step Hyp Ref Expression
1 fldgenval.1 B = Base F
2 fldgenval.2 φ F DivRing
3 ssidd φ B B
4 1 2 3 fldgenssv φ F fldGen B B
5 1 2 3 fldgenssid φ B F fldGen B
6 4 5 eqssd φ F fldGen B = B