Metamath Proof Explorer


Theorem fllep1

Description: A basic property of the floor (greatest integer) function. (Contributed by Mario Carneiro, 21-May-2016)

Ref Expression
Assertion fllep1 AAA+1

Proof

Step Hyp Ref Expression
1 flltp1 AA<A+1
2 reflcl AA
3 peano2re AA+1
4 2 3 syl AA+1
5 ltle AA+1A<A+1AA+1
6 4 5 mpdan AA<A+1AA+1
7 1 6 mpd AAA+1