Metamath Proof Explorer


Theorem flzadd

Description: An integer can be moved in and out of the floor of a sum. (Contributed by NM, 2-Jan-2009)

Ref Expression
Assertion flzadd NAN+A=N+A

Proof

Step Hyp Ref Expression
1 fladdz ANA+N=A+N
2 recn AA
3 zcn NN
4 addcom ANA+N=N+A
5 2 3 4 syl2an ANA+N=N+A
6 5 fveq2d ANA+N=N+A
7 reflcl AA
8 7 recnd AA
9 addcom ANA+N=N+A
10 8 3 9 syl2an ANA+N=N+A
11 1 6 10 3eqtr3d ANN+A=N+A
12 11 ancoms NAN+A=N+A