Metamath Proof Explorer


Theorem fmpt3d

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017)

Ref Expression
Hypotheses fmpt3d.1 φF=xAB
fmpt3d.2 φxABC
Assertion fmpt3d φF:AC

Proof

Step Hyp Ref Expression
1 fmpt3d.1 φF=xAB
2 fmpt3d.2 φxABC
3 2 fmpttd φxAB:AC
4 1 feq1d φF:ACxAB:AC
5 3 4 mpbird φF:AC