Metamath Proof Explorer


Theorem fmtno4

Description: The 4 th Fermat number, see remark in ApostolNT p. 7. (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno4 FermatNo4=65537

Proof

Step Hyp Ref Expression
1 4nn0 40
2 fmtno 40FermatNo4=224+1
3 1 2 ax-mp FermatNo4=224+1
4 2exp4 24=16
5 4 oveq2i 224=216
6 5 oveq1i 224+1=216+1
7 2exp16 216=65536
8 7 oveq1i 216+1=65536+1
9 6nn0 60
10 5nn0 50
11 9 10 deccl 650
12 11 10 deccl 6550
13 3nn0 30
14 12 13 deccl 65530
15 6p1e7 6+1=7
16 eqid 65536=65536
17 14 9 15 16 decsuc 65536+1=65537
18 6 8 17 3eqtri 224+1=65537
19 3 18 eqtri FermatNo4=65537