Metamath Proof Explorer


Theorem fmtno5

Description: The 5 th Fermat number. (Contributed by AV, 30-Jul-2021)

Ref Expression
Assertion fmtno5 FermatNo5=4294967297

Proof

Step Hyp Ref Expression
1 df-5 5=4+1
2 1 fveq2i FermatNo5=FermatNo4+1
3 4nn0 40
4 fmtnorec1 40FermatNo4+1=FermatNo412+1
5 3 4 ax-mp FermatNo4+1=FermatNo412+1
6 2 5 eqtri FermatNo5=FermatNo412+1
7 2nn0 20
8 3 7 deccl 420
9 9nn0 90
10 8 9 deccl 4290
11 10 3 deccl 42940
12 11 9 deccl 429490
13 6nn0 60
14 12 13 deccl 4294960
15 7nn0 70
16 14 15 deccl 42949670
17 16 7 deccl 429496720
18 17 9 deccl 4294967290
19 6p1e7 6+1=7
20 5nn0 50
21 13 20 deccl 650
22 21 20 deccl 6550
23 3nn0 30
24 22 23 deccl 65530
25 1nn0 10
26 fmtno4 FermatNo4=65537
27 3p1e4 3+1=4
28 eqid 6553=6553
29 22 23 27 28 decsuc 6553+1=6554
30 6cn 6
31 ax-1cn 1
32 df-7 7=6+1
33 30 31 32 mvrraddi 71=6
34 24 15 25 26 29 33 decsubi FermatNo41=65536
35 34 oveq1i FermatNo412=655362
36 fmtno5lem4 655362=4294967296
37 35 36 eqtri FermatNo412=4294967296
38 18 13 19 37 decsuc FermatNo412+1=4294967297
39 6 38 eqtri FermatNo5=4294967297