Metamath Proof Explorer


Theorem fndmdifcom

Description: The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015)

Ref Expression
Assertion fndmdifcom FFnAGFnAdomFG=domGF

Proof

Step Hyp Ref Expression
1 necom FxGxGxFx
2 1 rabbii xA|FxGx=xA|GxFx
3 fndmdif FFnAGFnAdomFG=xA|FxGx
4 fndmdif GFnAFFnAdomGF=xA|GxFx
5 4 ancoms FFnAGFnAdomGF=xA|GxFx
6 2 3 5 3eqtr4a FFnAGFnAdomFG=domGF