Metamath Proof Explorer


Theorem fndmdifeq0

Description: The difference set of two functions is empty if and only if the functions are equal. (Contributed by Stefan O'Rear, 17-Jan-2015)

Ref Expression
Assertion fndmdifeq0 FFnAGFnAdomFG=F=G

Proof

Step Hyp Ref Expression
1 fndmdif FFnAGFnAdomFG=xA|FxGx
2 1 eqeq1d FFnAGFnAdomFG=xA|FxGx=
3 rabeq0 xA|FxGx=xA¬FxGx
4 nne ¬FxGxFx=Gx
5 4 ralbii xA¬FxGxxAFx=Gx
6 3 5 bitri xA|FxGx=xAFx=Gx
7 eqfnfv FFnAGFnAF=GxAFx=Gx
8 6 7 bitr4id FFnAGFnAxA|FxGx=F=G
9 2 8 bitrd FFnAGFnAdomFG=F=G