Metamath Proof Explorer


Theorem fndmexb

Description: The domain of a function is a set iff the function is a set. (Contributed by AV, 8-Aug-2024)

Ref Expression
Assertion fndmexb FFnAAVFV

Proof

Step Hyp Ref Expression
1 fnex FFnAAVFV
2 1 ex FFnAAVFV
3 simpr FFnAFVFV
4 simpl FFnAFVFFnA
5 3 4 fndmexd FFnAFVAV
6 5 ex FFnAFVAV
7 2 6 impbid FFnAAVFV