Metamath Proof Explorer


Theorem fniinfv

Description: The indexed intersection of a function's values is the intersection of its range. (Contributed by NM, 20-Oct-2005)

Ref Expression
Assertion fniinfv FFnAxAFx=ranF

Proof

Step Hyp Ref Expression
1 fvex FxV
2 1 dfiin2 xAFx=y|xAy=Fx
3 fnrnfv FFnAranF=y|xAy=Fx
4 3 inteqd FFnAranF=y|xAy=Fx
5 2 4 eqtr4id FFnAxAFx=ranF