Metamath Proof Explorer


Theorem fnimafnex

Description: The functional image of a function value exists. (Contributed by RP, 31-Oct-2024)

Ref Expression
Hypothesis fnimafnex.f FFnB
Assertion fnimafnex FGAV

Proof

Step Hyp Ref Expression
1 fnimafnex.f FFnB
2 fnfun FFnBFunF
3 1 2 ax-mp FunF
4 fvex GAV
5 funimaexg FunFGAVFGAV
6 3 4 5 mp2an FGAV