Metamath Proof Explorer


Theorem fnmptfvd

Description: A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019)

Ref Expression
Hypotheses fnmptfvd.m φ M Fn A
fnmptfvd.s i = a D = C
fnmptfvd.d φ i A D U
fnmptfvd.c φ a A C V
Assertion fnmptfvd φ M = a A C i A M i = D

Proof

Step Hyp Ref Expression
1 fnmptfvd.m φ M Fn A
2 fnmptfvd.s i = a D = C
3 fnmptfvd.d φ i A D U
4 fnmptfvd.c φ a A C V
5 4 ralrimiva φ a A C V
6 eqid a A C = a A C
7 6 fnmpt a A C V a A C Fn A
8 5 7 syl φ a A C Fn A
9 eqfnfv M Fn A a A C Fn A M = a A C i A M i = a A C i
10 1 8 9 syl2anc φ M = a A C i A M i = a A C i
11 2 cbvmptv i A D = a A C
12 11 eqcomi a A C = i A D
13 12 a1i φ a A C = i A D
14 13 fveq1d φ a A C i = i A D i
15 14 eqeq2d φ M i = a A C i M i = i A D i
16 15 ralbidv φ i A M i = a A C i i A M i = i A D i
17 simpr φ i A i A
18 eqid i A D = i A D
19 18 fvmpt2 i A D U i A D i = D
20 17 3 19 syl2anc φ i A i A D i = D
21 20 eqeq2d φ i A M i = i A D i M i = D
22 21 ralbidva φ i A M i = i A D i i A M i = D
23 10 16 22 3bitrd φ M = a A C i A M i = D