Metamath Proof Explorer


Theorem fnrnafv

Description: The range of a function expressed as a collection of the function's values, analogous to fnrnfv . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion fnrnafv FFnAranF=y|xAy=F'''x

Proof

Step Hyp Ref Expression
1 dfafn5a FFnAF=xAF'''x
2 1 rneqd FFnAranF=ranxAF'''x
3 eqid xAF'''x=xAF'''x
4 3 rnmpt ranxAF'''x=y|xAy=F'''x
5 2 4 eqtrdi FFnAranF=y|xAy=F'''x