Metamath Proof Explorer


Theorem dfafn5a

Description: Representation of a function in terms of its values, analogous to dffn5 (only one direction of implication!). (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion dfafn5a FFnAF=xAF'''x

Proof

Step Hyp Ref Expression
1 fnrel FFnARelF
2 dfrel4v RelFF=xy|xFy
3 1 2 sylib FFnAF=xy|xFy
4 fnbr FFnAxFyxA
5 4 ex FFnAxFyxA
6 5 pm4.71rd FFnAxFyxAxFy
7 eqcom y=F'''xF'''x=y
8 fnbrafvb FFnAxAF'''x=yxFy
9 7 8 bitrid FFnAxAy=F'''xxFy
10 9 pm5.32da FFnAxAy=F'''xxAxFy
11 6 10 bitr4d FFnAxFyxAy=F'''x
12 11 opabbidv FFnAxy|xFy=xy|xAy=F'''x
13 3 12 eqtrd FFnAF=xy|xAy=F'''x
14 df-mpt xAF'''x=xy|xAy=F'''x
15 13 14 eqtr4di FFnAF=xAF'''x