| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnrel | ⊢ ( 𝐹  Fn  𝐴  →  Rel  𝐹 ) | 
						
							| 2 |  | dfrel4v | ⊢ ( Rel  𝐹  ↔  𝐹  =  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥 𝐹 𝑦 } ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( 𝐹  Fn  𝐴  →  𝐹  =  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥 𝐹 𝑦 } ) | 
						
							| 4 |  | fnbr | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝑥 𝐹 𝑦 )  →  𝑥  ∈  𝐴 ) | 
						
							| 5 | 4 | ex | ⊢ ( 𝐹  Fn  𝐴  →  ( 𝑥 𝐹 𝑦  →  𝑥  ∈  𝐴 ) ) | 
						
							| 6 | 5 | pm4.71rd | ⊢ ( 𝐹  Fn  𝐴  →  ( 𝑥 𝐹 𝑦  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥 𝐹 𝑦 ) ) ) | 
						
							| 7 |  | eqcom | ⊢ ( 𝑦  =  ( 𝐹 ''' 𝑥 )  ↔  ( 𝐹 ''' 𝑥 )  =  𝑦 ) | 
						
							| 8 |  | fnbrafvb | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ''' 𝑥 )  =  𝑦  ↔  𝑥 𝐹 𝑦 ) ) | 
						
							| 9 | 7 8 | bitrid | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝑦  =  ( 𝐹 ''' 𝑥 )  ↔  𝑥 𝐹 𝑦 ) ) | 
						
							| 10 | 9 | pm5.32da | ⊢ ( 𝐹  Fn  𝐴  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  =  ( 𝐹 ''' 𝑥 ) )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥 𝐹 𝑦 ) ) ) | 
						
							| 11 | 6 10 | bitr4d | ⊢ ( 𝐹  Fn  𝐴  →  ( 𝑥 𝐹 𝑦  ↔  ( 𝑥  ∈  𝐴  ∧  𝑦  =  ( 𝐹 ''' 𝑥 ) ) ) ) | 
						
							| 12 | 11 | opabbidv | ⊢ ( 𝐹  Fn  𝐴  →  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥 𝐹 𝑦 }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  =  ( 𝐹 ''' 𝑥 ) ) } ) | 
						
							| 13 | 3 12 | eqtrd | ⊢ ( 𝐹  Fn  𝐴  →  𝐹  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  =  ( 𝐹 ''' 𝑥 ) ) } ) | 
						
							| 14 |  | df-mpt | ⊢ ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ''' 𝑥 ) )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  =  ( 𝐹 ''' 𝑥 ) ) } | 
						
							| 15 | 13 14 | eqtr4di | ⊢ ( 𝐹  Fn  𝐴  →  𝐹  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ''' 𝑥 ) ) ) |