Step |
Hyp |
Ref |
Expression |
1 |
|
fnrel |
|- ( F Fn A -> Rel F ) |
2 |
|
dfrel4v |
|- ( Rel F <-> F = { <. x , y >. | x F y } ) |
3 |
1 2
|
sylib |
|- ( F Fn A -> F = { <. x , y >. | x F y } ) |
4 |
|
fnbr |
|- ( ( F Fn A /\ x F y ) -> x e. A ) |
5 |
4
|
ex |
|- ( F Fn A -> ( x F y -> x e. A ) ) |
6 |
5
|
pm4.71rd |
|- ( F Fn A -> ( x F y <-> ( x e. A /\ x F y ) ) ) |
7 |
|
eqcom |
|- ( y = ( F ''' x ) <-> ( F ''' x ) = y ) |
8 |
|
fnbrafvb |
|- ( ( F Fn A /\ x e. A ) -> ( ( F ''' x ) = y <-> x F y ) ) |
9 |
7 8
|
syl5bb |
|- ( ( F Fn A /\ x e. A ) -> ( y = ( F ''' x ) <-> x F y ) ) |
10 |
9
|
pm5.32da |
|- ( F Fn A -> ( ( x e. A /\ y = ( F ''' x ) ) <-> ( x e. A /\ x F y ) ) ) |
11 |
6 10
|
bitr4d |
|- ( F Fn A -> ( x F y <-> ( x e. A /\ y = ( F ''' x ) ) ) ) |
12 |
11
|
opabbidv |
|- ( F Fn A -> { <. x , y >. | x F y } = { <. x , y >. | ( x e. A /\ y = ( F ''' x ) ) } ) |
13 |
3 12
|
eqtrd |
|- ( F Fn A -> F = { <. x , y >. | ( x e. A /\ y = ( F ''' x ) ) } ) |
14 |
|
df-mpt |
|- ( x e. A |-> ( F ''' x ) ) = { <. x , y >. | ( x e. A /\ y = ( F ''' x ) ) } |
15 |
13 14
|
eqtr4di |
|- ( F Fn A -> F = ( x e. A |-> ( F ''' x ) ) ) |