| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnrel |  |-  ( F Fn A -> Rel F ) | 
						
							| 2 |  | dfrel4v |  |-  ( Rel F <-> F = { <. x , y >. | x F y } ) | 
						
							| 3 | 1 2 | sylib |  |-  ( F Fn A -> F = { <. x , y >. | x F y } ) | 
						
							| 4 |  | fnbr |  |-  ( ( F Fn A /\ x F y ) -> x e. A ) | 
						
							| 5 | 4 | ex |  |-  ( F Fn A -> ( x F y -> x e. A ) ) | 
						
							| 6 | 5 | pm4.71rd |  |-  ( F Fn A -> ( x F y <-> ( x e. A /\ x F y ) ) ) | 
						
							| 7 |  | eqcom |  |-  ( y = ( F ''' x ) <-> ( F ''' x ) = y ) | 
						
							| 8 |  | fnbrafvb |  |-  ( ( F Fn A /\ x e. A ) -> ( ( F ''' x ) = y <-> x F y ) ) | 
						
							| 9 | 7 8 | bitrid |  |-  ( ( F Fn A /\ x e. A ) -> ( y = ( F ''' x ) <-> x F y ) ) | 
						
							| 10 | 9 | pm5.32da |  |-  ( F Fn A -> ( ( x e. A /\ y = ( F ''' x ) ) <-> ( x e. A /\ x F y ) ) ) | 
						
							| 11 | 6 10 | bitr4d |  |-  ( F Fn A -> ( x F y <-> ( x e. A /\ y = ( F ''' x ) ) ) ) | 
						
							| 12 | 11 | opabbidv |  |-  ( F Fn A -> { <. x , y >. | x F y } = { <. x , y >. | ( x e. A /\ y = ( F ''' x ) ) } ) | 
						
							| 13 | 3 12 | eqtrd |  |-  ( F Fn A -> F = { <. x , y >. | ( x e. A /\ y = ( F ''' x ) ) } ) | 
						
							| 14 |  | df-mpt |  |-  ( x e. A |-> ( F ''' x ) ) = { <. x , y >. | ( x e. A /\ y = ( F ''' x ) ) } | 
						
							| 15 | 13 14 | eqtr4di |  |-  ( F Fn A -> F = ( x e. A |-> ( F ''' x ) ) ) |