Metamath Proof Explorer


Theorem dfafn5b

Description: Representation of a function in terms of its values, analogous to dffn5 (only if it is assumed that the function value for each x is a set). (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion dfafn5b
|- ( A. x e. A ( F ''' x ) e. V -> ( F Fn A <-> F = ( x e. A |-> ( F ''' x ) ) ) )

Proof

Step Hyp Ref Expression
1 dfafn5a
 |-  ( F Fn A -> F = ( x e. A |-> ( F ''' x ) ) )
2 eqid
 |-  ( x e. A |-> ( F ''' x ) ) = ( x e. A |-> ( F ''' x ) )
3 2 fnmpt
 |-  ( A. x e. A ( F ''' x ) e. V -> ( x e. A |-> ( F ''' x ) ) Fn A )
4 fneq1
 |-  ( F = ( x e. A |-> ( F ''' x ) ) -> ( F Fn A <-> ( x e. A |-> ( F ''' x ) ) Fn A ) )
5 3 4 syl5ibrcom
 |-  ( A. x e. A ( F ''' x ) e. V -> ( F = ( x e. A |-> ( F ''' x ) ) -> F Fn A ) )
6 1 5 impbid2
 |-  ( A. x e. A ( F ''' x ) e. V -> ( F Fn A <-> F = ( x e. A |-> ( F ''' x ) ) ) )