Step |
Hyp |
Ref |
Expression |
1 |
|
dfafn5a |
|- ( F Fn A -> F = ( x e. A |-> ( F ''' x ) ) ) |
2 |
|
eqid |
|- ( x e. A |-> ( F ''' x ) ) = ( x e. A |-> ( F ''' x ) ) |
3 |
2
|
fnmpt |
|- ( A. x e. A ( F ''' x ) e. V -> ( x e. A |-> ( F ''' x ) ) Fn A ) |
4 |
|
fneq1 |
|- ( F = ( x e. A |-> ( F ''' x ) ) -> ( F Fn A <-> ( x e. A |-> ( F ''' x ) ) Fn A ) ) |
5 |
3 4
|
syl5ibrcom |
|- ( A. x e. A ( F ''' x ) e. V -> ( F = ( x e. A |-> ( F ''' x ) ) -> F Fn A ) ) |
6 |
1 5
|
impbid2 |
|- ( A. x e. A ( F ''' x ) e. V -> ( F Fn A <-> F = ( x e. A |-> ( F ''' x ) ) ) ) |