| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfafn5a |  |-  ( F Fn A -> F = ( x e. A |-> ( F ''' x ) ) ) | 
						
							| 2 |  | eqid |  |-  ( x e. A |-> ( F ''' x ) ) = ( x e. A |-> ( F ''' x ) ) | 
						
							| 3 | 2 | fnmpt |  |-  ( A. x e. A ( F ''' x ) e. V -> ( x e. A |-> ( F ''' x ) ) Fn A ) | 
						
							| 4 |  | fneq1 |  |-  ( F = ( x e. A |-> ( F ''' x ) ) -> ( F Fn A <-> ( x e. A |-> ( F ''' x ) ) Fn A ) ) | 
						
							| 5 | 3 4 | syl5ibrcom |  |-  ( A. x e. A ( F ''' x ) e. V -> ( F = ( x e. A |-> ( F ''' x ) ) -> F Fn A ) ) | 
						
							| 6 | 1 5 | impbid2 |  |-  ( A. x e. A ( F ''' x ) e. V -> ( F Fn A <-> F = ( x e. A |-> ( F ''' x ) ) ) ) |