Metamath Proof Explorer


Theorem dfafn5b

Description: Representation of a function in terms of its values, analogous to dffn5 (only if it is assumed that the function value for each x is a set). (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion dfafn5b xAF'''xVFFnAF=xAF'''x

Proof

Step Hyp Ref Expression
1 dfafn5a FFnAF=xAF'''x
2 eqid xAF'''x=xAF'''x
3 2 fnmpt xAF'''xVxAF'''xFnA
4 fneq1 F=xAF'''xFFnAxAF'''xFnA
5 3 4 syl5ibrcom xAF'''xVF=xAF'''xFFnA
6 1 5 impbid2 xAF'''xVFFnAF=xAF'''x