Metamath Proof Explorer


Theorem fnssresd

Description: Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses fnssresd.1 φFFnA
fnssresd.2 φBA
Assertion fnssresd φFBFnB

Proof

Step Hyp Ref Expression
1 fnssresd.1 φFFnA
2 fnssresd.2 φBA
3 fnssres FFnABAFBFnB
4 1 2 3 syl2anc φFBFnB