Metamath Proof Explorer


Theorem foelcdmi

Description: A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020)

Ref Expression
Assertion foelcdmi F:AontoBYBxAFx=Y

Proof

Step Hyp Ref Expression
1 forn F:AontoBranF=B
2 1 eleq2d F:AontoBYranFYB
3 fofn F:AontoBFFnA
4 fvelrnb FFnAYranFxAFx=Y
5 3 4 syl F:AontoBYranFxAFx=Y
6 2 5 bitr3d F:AontoBYBxAFx=Y
7 6 biimpa F:AontoBYBxAFx=Y