Metamath Proof Explorer


Theorem foeq2

Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994)

Ref Expression
Assertion foeq2 A=BF:AontoCF:BontoC

Proof

Step Hyp Ref Expression
1 fneq2 A=BFFnAFFnB
2 1 anbi1d A=BFFnAranF=CFFnBranF=C
3 df-fo F:AontoCFFnAranF=C
4 df-fo F:BontoCFFnBranF=C
5 2 3 4 3bitr4g A=BF:AontoCF:BontoC