Metamath Proof Explorer


Theorem fovcdmd

Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypotheses fovcdmd.1 φF:R×SC
fovcdmd.2 φAR
fovcdmd.3 φBS
Assertion fovcdmd φAFBC

Proof

Step Hyp Ref Expression
1 fovcdmd.1 φF:R×SC
2 fovcdmd.2 φAR
3 fovcdmd.3 φBS
4 fovcdm F:R×SCARBSAFBC
5 1 2 3 4 syl3anc φAFBC