Metamath Proof Explorer


Theorem fpr2a

Description: Weak version of fpr2 which is useful for proofs that avoid the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024)

Ref Expression
Hypothesis fpr2a.1 F=frecsRAG
Assertion fpr2a RFrARPoARSeAXdomFFX=XGFPredRAX

Proof

Step Hyp Ref Expression
1 fpr2a.1 F=frecsRAG
2 fveq2 y=XFy=FX
3 id y=Xy=X
4 predeq3 y=XPredRAy=PredRAX
5 4 reseq2d y=XFPredRAy=FPredRAX
6 3 5 oveq12d y=XyGFPredRAy=XGFPredRAX
7 2 6 eqeq12d y=XFy=yGFPredRAyFX=XGFPredRAX
8 7 imbi2d y=XRFrARPoARSeAFy=yGFPredRAyRFrARPoARSeAFX=XGFPredRAX
9 eqid f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
10 9 1 fprlem1 RFrARPoARSeAgf|xfFnxxAyxPredRAyxyxfy=yGfPredRAyhf|xfFnxxAyxPredRAyxyxfy=yGfPredRAyxguxhvu=v
11 9 1 10 frrlem10 RFrARPoARSeAydomFFy=yGFPredRAy
12 11 expcom ydomFRFrARPoARSeAFy=yGFPredRAy
13 8 12 vtoclga XdomFRFrARPoARSeAFX=XGFPredRAX
14 13 impcom RFrARPoARSeAXdomFFX=XGFPredRAX