Metamath Proof Explorer


Theorem fprodclf

Description: Closure of a finite product of complex numbers. A version of fprodcl using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodclf.kph kφ
fprodclf.a φAFin
fprodclf.b φkAB
Assertion fprodclf φkAB

Proof

Step Hyp Ref Expression
1 fprodclf.kph kφ
2 fprodclf.a φAFin
3 fprodclf.b φkAB
4 ssidd φ
5 mulcl xyxy
6 5 adantl φxyxy
7 1cnd φ1
8 1 4 6 2 3 7 fprodcllemf φkAB