Metamath Proof Explorer


Theorem frege105

Description: Proposition 105 of Frege1879 p. 73. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege103.z Z V
Assertion frege105 ¬ X t+ R Z Z = X X t+ R I Z

Proof

Step Hyp Ref Expression
1 frege103.z Z V
2 1 dffrege99 ¬ X t+ R Z Z = X X t+ R I Z
3 frege52aid ¬ X t+ R Z Z = X X t+ R I Z ¬ X t+ R Z Z = X X t+ R I Z
4 2 3 ax-mp ¬ X t+ R Z Z = X X t+ R I Z