Metamath Proof Explorer


Theorem frege105

Description: Proposition 105 of Frege1879 p. 73. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege103.z
|- Z e. V
Assertion frege105
|- ( ( -. X ( t+ ` R ) Z -> Z = X ) -> X ( ( t+ ` R ) u. _I ) Z )

Proof

Step Hyp Ref Expression
1 frege103.z
 |-  Z e. V
2 1 dffrege99
 |-  ( ( -. X ( t+ ` R ) Z -> Z = X ) <-> X ( ( t+ ` R ) u. _I ) Z )
3 frege52aid
 |-  ( ( ( -. X ( t+ ` R ) Z -> Z = X ) <-> X ( ( t+ ` R ) u. _I ) Z ) -> ( ( -. X ( t+ ` R ) Z -> Z = X ) -> X ( ( t+ ` R ) u. _I ) Z ) )
4 2 3 ax-mp
 |-  ( ( -. X ( t+ ` R ) Z -> Z = X ) -> X ( ( t+ ` R ) u. _I ) Z )