Metamath Proof Explorer


Theorem frege106

Description: Whatever follows X in the R -sequence belongs to the R -sequence beginning with X . Proposition 106 of Frege1879 p. 73. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege103.z
|- Z e. V
Assertion frege106
|- ( X ( t+ ` R ) Z -> X ( ( t+ ` R ) u. _I ) Z )

Proof

Step Hyp Ref Expression
1 frege103.z
 |-  Z e. V
2 1 frege105
 |-  ( ( -. X ( t+ ` R ) Z -> Z = X ) -> X ( ( t+ ` R ) u. _I ) Z )
3 frege37
 |-  ( ( ( -. X ( t+ ` R ) Z -> Z = X ) -> X ( ( t+ ` R ) u. _I ) Z ) -> ( X ( t+ ` R ) Z -> X ( ( t+ ` R ) u. _I ) Z ) )
4 2 3 ax-mp
 |-  ( X ( t+ ` R ) Z -> X ( ( t+ ` R ) u. _I ) Z )