Metamath Proof Explorer


Theorem dffrege99

Description: If Z is identical with X or follows X in the R -sequence, then we say : " Z belongs to the R -sequence beginning with X " or " X belongs to the R -sequence ending with Z ". Definition 99 of Frege1879 p. 71. (Contributed by RP, 2-Jul-2020)

Ref Expression
Hypothesis frege99.z
|- Z e. U
Assertion dffrege99
|- ( ( -. X ( t+ ` R ) Z -> Z = X ) <-> X ( ( t+ ` R ) u. _I ) Z )

Proof

Step Hyp Ref Expression
1 frege99.z
 |-  Z e. U
2 brun
 |-  ( X ( ( t+ ` R ) u. _I ) Z <-> ( X ( t+ ` R ) Z \/ X _I Z ) )
3 df-or
 |-  ( ( X ( t+ ` R ) Z \/ X _I Z ) <-> ( -. X ( t+ ` R ) Z -> X _I Z ) )
4 1 elexi
 |-  Z e. _V
5 4 ideq
 |-  ( X _I Z <-> X = Z )
6 eqcom
 |-  ( X = Z <-> Z = X )
7 5 6 bitri
 |-  ( X _I Z <-> Z = X )
8 7 imbi2i
 |-  ( ( -. X ( t+ ` R ) Z -> X _I Z ) <-> ( -. X ( t+ ` R ) Z -> Z = X ) )
9 2 3 8 3bitrri
 |-  ( ( -. X ( t+ ` R ) Z -> Z = X ) <-> X ( ( t+ ` R ) u. _I ) Z )