Description: If Z is identical with X or follows X in the R -sequence, then we say : " Z belongs to the R -sequence beginning with X " or " X belongs to the R -sequence ending with Z ". Definition 99 of Frege1879 p. 71. (Contributed by RP, 2-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frege99.z | |- Z e. U |
|
Assertion | dffrege99 | |- ( ( -. X ( t+ ` R ) Z -> Z = X ) <-> X ( ( t+ ` R ) u. _I ) Z ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege99.z | |- Z e. U |
|
2 | brun | |- ( X ( ( t+ ` R ) u. _I ) Z <-> ( X ( t+ ` R ) Z \/ X _I Z ) ) |
|
3 | df-or | |- ( ( X ( t+ ` R ) Z \/ X _I Z ) <-> ( -. X ( t+ ` R ) Z -> X _I Z ) ) |
|
4 | 1 | elexi | |- Z e. _V |
5 | 4 | ideq | |- ( X _I Z <-> X = Z ) |
6 | eqcom | |- ( X = Z <-> Z = X ) |
|
7 | 5 6 | bitri | |- ( X _I Z <-> Z = X ) |
8 | 7 | imbi2i | |- ( ( -. X ( t+ ` R ) Z -> X _I Z ) <-> ( -. X ( t+ ` R ) Z -> Z = X ) ) |
9 | 2 3 8 | 3bitrri | |- ( ( -. X ( t+ ` R ) Z -> Z = X ) <-> X ( ( t+ ` R ) u. _I ) Z ) |