Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Propositions from _Begriffsschrift_
_Begriffsschrift_ Chapter III Member of sequence
dffrege99
Metamath Proof Explorer
Description: If Z is identical with X or follows X in the R
-sequence, then we say : " Z belongs to the R -sequence
beginning with X " or " X belongs to the R -sequence ending
with Z ". Definition 99 of Frege1879 p. 71. (Contributed by RP , 2-Jul-2020)
Ref
Expression
Hypothesis
frege99.z
⊢ Z ∈ U
Assertion
dffrege99
⊢ ¬ X t+ ⁡ R Z → Z = X ↔ X t+ ⁡ R ∪ I Z
Proof
Step
Hyp
Ref
Expression
1
frege99.z
⊢ Z ∈ U
2
brun
⊢ X t+ ⁡ R ∪ I Z ↔ X t+ ⁡ R Z ∨ X I Z
3
df-or
⊢ X t+ ⁡ R Z ∨ X I Z ↔ ¬ X t+ ⁡ R Z → X I Z
4
1
elexi
⊢ Z ∈ V
5
4
ideq
⊢ X I Z ↔ X = Z
6
eqcom
⊢ X = Z ↔ Z = X
7
5 6
bitri
⊢ X I Z ↔ Z = X
8
7
imbi2i
⊢ ¬ X t+ ⁡ R Z → X I Z ↔ ¬ X t+ ⁡ R Z → Z = X
9
2 3 8
3bitrri
⊢ ¬ X t+ ⁡ R Z → Z = X ↔ X t+ ⁡ R ∪ I Z