Metamath Proof Explorer


Theorem dffrege99

Description: If Z is identical with X or follows X in the R -sequence, then we say : " Z belongs to the R -sequence beginning with X " or " X belongs to the R -sequence ending with Z ". Definition 99 of Frege1879 p. 71. (Contributed by RP, 2-Jul-2020)

Ref Expression
Hypothesis frege99.z ZU
Assertion dffrege99 ¬Xt+RZZ=XXt+RIZ

Proof

Step Hyp Ref Expression
1 frege99.z ZU
2 brun Xt+RIZXt+RZXIZ
3 df-or Xt+RZXIZ¬Xt+RZXIZ
4 1 elexi ZV
5 4 ideq XIZX=Z
6 eqcom X=ZZ=X
7 5 6 bitri XIZZ=X
8 7 imbi2i ¬Xt+RZXIZ¬Xt+RZZ=X
9 2 3 8 3bitrri ¬Xt+RZZ=XXt+RIZ