Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Propositions from _Begriffsschrift_
_Begriffsschrift_ Chapter III Member of sequence
dffrege99
Metamath Proof Explorer
Description: If Z is identical with X or follows X in the R
-sequence, then we say : " Z belongs to the R -sequence
beginning with X " or " X belongs to the R -sequence ending
with Z ". Definition 99 of Frege1879 p. 71. (Contributed by RP , 2-Jul-2020)
Ref
Expression
Hypothesis
frege99.z
⊢ 𝑍 ∈ 𝑈
Assertion
dffrege99
⊢ ( ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍 → 𝑍 = 𝑋 ) ↔ 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 )
Proof
Step
Hyp
Ref
Expression
1
frege99.z
⊢ 𝑍 ∈ 𝑈
2
brun
⊢ ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 ↔ ( 𝑋 ( t+ ‘ 𝑅 ) 𝑍 ∨ 𝑋 I 𝑍 ) )
3
df-or
⊢ ( ( 𝑋 ( t+ ‘ 𝑅 ) 𝑍 ∨ 𝑋 I 𝑍 ) ↔ ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍 → 𝑋 I 𝑍 ) )
4
1
elexi
⊢ 𝑍 ∈ V
5
4
ideq
⊢ ( 𝑋 I 𝑍 ↔ 𝑋 = 𝑍 )
6
eqcom
⊢ ( 𝑋 = 𝑍 ↔ 𝑍 = 𝑋 )
7
5 6
bitri
⊢ ( 𝑋 I 𝑍 ↔ 𝑍 = 𝑋 )
8
7
imbi2i
⊢ ( ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍 → 𝑋 I 𝑍 ) ↔ ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍 → 𝑍 = 𝑋 ) )
9
2 3 8
3bitrri
⊢ ( ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍 → 𝑍 = 𝑋 ) ↔ 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 )