Metamath Proof Explorer


Theorem dffrege99

Description: If Z is identical with X or follows X in the R -sequence, then we say : " Z belongs to the R -sequence beginning with X " or " X belongs to the R -sequence ending with Z ". Definition 99 of Frege1879 p. 71. (Contributed by RP, 2-Jul-2020)

Ref Expression
Hypothesis frege99.z 𝑍𝑈
Assertion dffrege99 ( ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍𝑍 = 𝑋 ) ↔ 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 )

Proof

Step Hyp Ref Expression
1 frege99.z 𝑍𝑈
2 brun ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 ↔ ( 𝑋 ( t+ ‘ 𝑅 ) 𝑍𝑋 I 𝑍 ) )
3 df-or ( ( 𝑋 ( t+ ‘ 𝑅 ) 𝑍𝑋 I 𝑍 ) ↔ ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍𝑋 I 𝑍 ) )
4 1 elexi 𝑍 ∈ V
5 4 ideq ( 𝑋 I 𝑍𝑋 = 𝑍 )
6 eqcom ( 𝑋 = 𝑍𝑍 = 𝑋 )
7 5 6 bitri ( 𝑋 I 𝑍𝑍 = 𝑋 )
8 7 imbi2i ( ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍𝑋 I 𝑍 ) ↔ ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍𝑍 = 𝑋 ) )
9 2 3 8 3bitrri ( ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍𝑍 = 𝑋 ) ↔ 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 )