Description: One direction of dffrege99 . Proposition 100 of Frege1879 p. 72. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frege99.z | ⊢ 𝑍 ∈ 𝑈 | |
Assertion | frege100 | ⊢ ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍 → 𝑍 = 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege99.z | ⊢ 𝑍 ∈ 𝑈 | |
2 | 1 | dffrege99 | ⊢ ( ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍 → 𝑍 = 𝑋 ) ↔ 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 ) |
3 | frege57aid | ⊢ ( ( ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍 → 𝑍 = 𝑋 ) ↔ 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 ) → ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍 → 𝑍 = 𝑋 ) ) ) | |
4 | 2 3 | ax-mp | ⊢ ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍 → 𝑍 = 𝑋 ) ) |