Metamath Proof Explorer


Theorem frege100

Description: One direction of dffrege99 . Proposition 100 of Frege1879 p. 72. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege99.z 𝑍𝑈
Assertion frege100 ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍𝑍 = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 frege99.z 𝑍𝑈
2 1 dffrege99 ( ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍𝑍 = 𝑋 ) ↔ 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 )
3 frege57aid ( ( ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍𝑍 = 𝑋 ) ↔ 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 ) → ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍𝑍 = 𝑋 ) ) )
4 2 3 ax-mp ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍𝑍 = 𝑋 ) )