Metamath Proof Explorer


Theorem frege101

Description: Lemma for frege102 . Proposition 101 of Frege1879 p. 72. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege99.z 𝑍𝑈
Assertion frege101 ( ( 𝑍 = 𝑋 → ( 𝑍 𝑅 𝑉𝑋 ( t+ ‘ 𝑅 ) 𝑉 ) ) → ( ( 𝑋 ( t+ ‘ 𝑅 ) 𝑍 → ( 𝑍 𝑅 𝑉𝑋 ( t+ ‘ 𝑅 ) 𝑉 ) ) → ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 → ( 𝑍 𝑅 𝑉𝑋 ( t+ ‘ 𝑅 ) 𝑉 ) ) ) )

Proof

Step Hyp Ref Expression
1 frege99.z 𝑍𝑈
2 1 frege100 ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍𝑍 = 𝑋 ) )
3 frege48 ( ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑍𝑍 = 𝑋 ) ) → ( ( 𝑍 = 𝑋 → ( 𝑍 𝑅 𝑉𝑋 ( t+ ‘ 𝑅 ) 𝑉 ) ) → ( ( 𝑋 ( t+ ‘ 𝑅 ) 𝑍 → ( 𝑍 𝑅 𝑉𝑋 ( t+ ‘ 𝑅 ) 𝑉 ) ) → ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 → ( 𝑍 𝑅 𝑉𝑋 ( t+ ‘ 𝑅 ) 𝑉 ) ) ) ) )
4 2 3 ax-mp ( ( 𝑍 = 𝑋 → ( 𝑍 𝑅 𝑉𝑋 ( t+ ‘ 𝑅 ) 𝑉 ) ) → ( ( 𝑋 ( t+ ‘ 𝑅 ) 𝑍 → ( 𝑍 𝑅 𝑉𝑋 ( t+ ‘ 𝑅 ) 𝑉 ) ) → ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 → ( 𝑍 𝑅 𝑉𝑋 ( t+ ‘ 𝑅 ) 𝑉 ) ) ) )