Metamath Proof Explorer


Theorem frege101

Description: Lemma for frege102 . Proposition 101 of Frege1879 p. 72. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege99.z
|- Z e. U
Assertion frege101
|- ( ( Z = X -> ( Z R V -> X ( t+ ` R ) V ) ) -> ( ( X ( t+ ` R ) Z -> ( Z R V -> X ( t+ ` R ) V ) ) -> ( X ( ( t+ ` R ) u. _I ) Z -> ( Z R V -> X ( t+ ` R ) V ) ) ) )

Proof

Step Hyp Ref Expression
1 frege99.z
 |-  Z e. U
2 1 frege100
 |-  ( X ( ( t+ ` R ) u. _I ) Z -> ( -. X ( t+ ` R ) Z -> Z = X ) )
3 frege48
 |-  ( ( X ( ( t+ ` R ) u. _I ) Z -> ( -. X ( t+ ` R ) Z -> Z = X ) ) -> ( ( Z = X -> ( Z R V -> X ( t+ ` R ) V ) ) -> ( ( X ( t+ ` R ) Z -> ( Z R V -> X ( t+ ` R ) V ) ) -> ( X ( ( t+ ` R ) u. _I ) Z -> ( Z R V -> X ( t+ ` R ) V ) ) ) ) )
4 2 3 ax-mp
 |-  ( ( Z = X -> ( Z R V -> X ( t+ ` R ) V ) ) -> ( ( X ( t+ ` R ) Z -> ( Z R V -> X ( t+ ` R ) V ) ) -> ( X ( ( t+ ` R ) u. _I ) Z -> ( Z R V -> X ( t+ ` R ) V ) ) ) )