Metamath Proof Explorer


Theorem frege100

Description: One direction of dffrege99 . Proposition 100 of Frege1879 p. 72. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege99.z
|- Z e. U
Assertion frege100
|- ( X ( ( t+ ` R ) u. _I ) Z -> ( -. X ( t+ ` R ) Z -> Z = X ) )

Proof

Step Hyp Ref Expression
1 frege99.z
 |-  Z e. U
2 1 dffrege99
 |-  ( ( -. X ( t+ ` R ) Z -> Z = X ) <-> X ( ( t+ ` R ) u. _I ) Z )
3 frege57aid
 |-  ( ( ( -. X ( t+ ` R ) Z -> Z = X ) <-> X ( ( t+ ` R ) u. _I ) Z ) -> ( X ( ( t+ ` R ) u. _I ) Z -> ( -. X ( t+ ` R ) Z -> Z = X ) ) )
4 2 3 ax-mp
 |-  ( X ( ( t+ ` R ) u. _I ) Z -> ( -. X ( t+ ` R ) Z -> Z = X ) )