Metamath Proof Explorer


Theorem frege117

Description: Lemma for frege118 . Proposition 117 of Frege1879 p. 78. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege116.x X U
Assertion frege117 b b R X a b R a a = X Y R X a Y R a a = X Fun R -1 -1 Y R X a Y R a a = X

Proof

Step Hyp Ref Expression
1 frege116.x X U
2 1 frege116 Fun R -1 -1 b b R X a b R a a = X
3 frege9 Fun R -1 -1 b b R X a b R a a = X b b R X a b R a a = X Y R X a Y R a a = X Fun R -1 -1 Y R X a Y R a a = X
4 2 3 ax-mp b b R X a b R a a = X Y R X a Y R a a = X Fun R -1 -1 Y R X a Y R a a = X