Metamath Proof Explorer


Theorem frege118

Description: Simplified application of one direction of dffrege115 . Proposition 118 of Frege1879 p. 78. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege116.x X U
frege118.y Y V
Assertion frege118 Fun R -1 -1 Y R X a Y R a a = X

Proof

Step Hyp Ref Expression
1 frege116.x X U
2 frege118.y Y V
3 2 frege58c b b R X a b R a a = X [˙Y / b]˙ b R X a b R a a = X
4 sbcimg Y V [˙Y / b]˙ b R X a b R a a = X [˙Y / b]˙ b R X [˙Y / b]˙ a b R a a = X
5 2 4 ax-mp [˙Y / b]˙ b R X a b R a a = X [˙Y / b]˙ b R X [˙Y / b]˙ a b R a a = X
6 sbcbr1g Y V [˙Y / b]˙ b R X Y / b b R X
7 2 6 ax-mp [˙Y / b]˙ b R X Y / b b R X
8 csbvarg Y V Y / b b = Y
9 2 8 ax-mp Y / b b = Y
10 9 breq1i Y / b b R X Y R X
11 7 10 bitri [˙Y / b]˙ b R X Y R X
12 sbcal [˙Y / b]˙ a b R a a = X a [˙Y / b]˙ b R a a = X
13 sbcimg Y V [˙Y / b]˙ b R a a = X [˙Y / b]˙ b R a [˙Y / b]˙ a = X
14 2 13 ax-mp [˙Y / b]˙ b R a a = X [˙Y / b]˙ b R a [˙Y / b]˙ a = X
15 sbcbr1g Y V [˙Y / b]˙ b R a Y / b b R a
16 2 15 ax-mp [˙Y / b]˙ b R a Y / b b R a
17 9 breq1i Y / b b R a Y R a
18 16 17 bitri [˙Y / b]˙ b R a Y R a
19 sbcg Y V [˙Y / b]˙ a = X a = X
20 2 19 ax-mp [˙Y / b]˙ a = X a = X
21 18 20 imbi12i [˙Y / b]˙ b R a [˙Y / b]˙ a = X Y R a a = X
22 14 21 bitri [˙Y / b]˙ b R a a = X Y R a a = X
23 22 albii a [˙Y / b]˙ b R a a = X a Y R a a = X
24 12 23 bitri [˙Y / b]˙ a b R a a = X a Y R a a = X
25 11 24 imbi12i [˙Y / b]˙ b R X [˙Y / b]˙ a b R a a = X Y R X a Y R a a = X
26 5 25 bitri [˙Y / b]˙ b R X a b R a a = X Y R X a Y R a a = X
27 3 26 sylib b b R X a b R a a = X Y R X a Y R a a = X
28 1 frege117 b b R X a b R a a = X Y R X a Y R a a = X Fun R -1 -1 Y R X a Y R a a = X
29 27 28 ax-mp Fun R -1 -1 Y R X a Y R a a = X