Metamath Proof Explorer


Theorem frege118

Description: Simplified application of one direction of dffrege115 . Proposition 118 of Frege1879 p. 78. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege116.x XU
frege118.y YV
Assertion frege118 FunR-1-1YRXaYRaa=X

Proof

Step Hyp Ref Expression
1 frege116.x XU
2 frege118.y YV
3 2 frege58c bbRXabRaa=X[˙Y/b]˙bRXabRaa=X
4 sbcimg YV[˙Y/b]˙bRXabRaa=X[˙Y/b]˙bRX[˙Y/b]˙abRaa=X
5 2 4 ax-mp [˙Y/b]˙bRXabRaa=X[˙Y/b]˙bRX[˙Y/b]˙abRaa=X
6 sbcbr1g YV[˙Y/b]˙bRXY/bbRX
7 2 6 ax-mp [˙Y/b]˙bRXY/bbRX
8 csbvarg YVY/bb=Y
9 2 8 ax-mp Y/bb=Y
10 9 breq1i Y/bbRXYRX
11 7 10 bitri [˙Y/b]˙bRXYRX
12 sbcal [˙Y/b]˙abRaa=Xa[˙Y/b]˙bRaa=X
13 sbcimg YV[˙Y/b]˙bRaa=X[˙Y/b]˙bRa[˙Y/b]˙a=X
14 2 13 ax-mp [˙Y/b]˙bRaa=X[˙Y/b]˙bRa[˙Y/b]˙a=X
15 sbcbr1g YV[˙Y/b]˙bRaY/bbRa
16 2 15 ax-mp [˙Y/b]˙bRaY/bbRa
17 9 breq1i Y/bbRaYRa
18 16 17 bitri [˙Y/b]˙bRaYRa
19 sbcg YV[˙Y/b]˙a=Xa=X
20 2 19 ax-mp [˙Y/b]˙a=Xa=X
21 18 20 imbi12i [˙Y/b]˙bRa[˙Y/b]˙a=XYRaa=X
22 14 21 bitri [˙Y/b]˙bRaa=XYRaa=X
23 22 albii a[˙Y/b]˙bRaa=XaYRaa=X
24 12 23 bitri [˙Y/b]˙abRaa=XaYRaa=X
25 11 24 imbi12i [˙Y/b]˙bRX[˙Y/b]˙abRaa=XYRXaYRaa=X
26 5 25 bitri [˙Y/b]˙bRXabRaa=XYRXaYRaa=X
27 3 26 sylib bbRXabRaa=XYRXaYRaa=X
28 1 frege117 bbRXabRaa=XYRXaYRaa=XFunR-1-1YRXaYRaa=X
29 27 28 ax-mp FunR-1-1YRXaYRaa=X